196 research outputs found

    On stochastic set functions. I

    Full text link

    Stability for Borell-Brascamp-Lieb inequalities

    Get PDF
    We study stability issues for the so-called Borell-Brascamp-Lieb inequalities, proving that when near equality is realized, the involved functions must be L1L^1-close to be pp-concave and to coincide up to homotheties of their graphs.Comment: to appear in GAFA Seminar Note

    CVaR minimization by the SRA algorithm

    Get PDF
    Using the risk measure CV aR in �nancial analysis has become more and more popular recently. In this paper we apply CV aR for portfolio optimization. The problem is formulated as a two-stage stochastic programming model, and the SRA algorithm, a recently developed heuristic algorithm, is applied for minimizing CV aR

    Optimal Concentration of Information Content For Log-Concave Densities

    Full text link
    An elementary proof is provided of sharp bounds for the varentropy of random vectors with log-concave densities, as well as for deviations of the information content from its mean. These bounds significantly improve on the bounds obtained by Bobkov and Madiman ({\it Ann. Probab.}, 39(4):1528--1543, 2011).Comment: 15 pages. Changes in v2: Remark 2.5 (due to C. Saroglou) added with more general sufficient conditions for equality in Theorem 2.3. Also some minor corrections and added reference

    Projective re-normalization for improving the behavior of a homogeneous conic linear system

    Get PDF
    In this paper we study the homogeneous conic system F : Ax = 0, x ∈ C \ {0}. We choose a point ¯s ∈ intC∗ that serves as a normalizer and consider computational properties of the normalized system F¯s : Ax = 0, ¯sT x = 1, x ∈ C. We show that the computational complexity of solving F via an interior-point method depends only on the complexity value ϑ of the barrier for C and on the symmetry of the origin in the image set H¯s := {Ax : ¯sT x = 1, x ∈ C}, where the symmetry of 0 in H¯s is sym(0,H¯s) := max{α : y ∈ H¯s -->−αy ∈ H¯s} .We show that a solution of F can be computed in O(sqrtϑ ln(ϑ/sym(0,H¯s)) interior-point iterations. In order to improve the theoretical and practical computation of a solution of F, we next present a general theory for projective re-normalization of the feasible region F¯s and the image set H¯s and prove the existence of a normalizer ¯s such that sym(0,H¯s) ≥ 1/m provided that F has an interior solution. We develop a methodology for constructing a normalizer ¯s such that sym(0,H¯s) ≥ 1/m with high probability, based on sampling on a geometric random walk with associated probabilistic complexity analysis. While such a normalizer is not itself computable in strongly-polynomialtime, the normalizer will yield a conic system that is solvable in O(sqrtϑ ln(mϑ)) iterations, which is strongly-polynomialtime. Finally, we implement this methodology on randomly generated homogeneous linear programming feasibility problems, constructed to be poorly behaved. Our computational results indicate that the projective re-normalization methodology holds the promise to markedly reduce the overall computation time for conic feasibility problems; for instance we observe a 46% decrease in average IPM iterations for 100 randomly generated poorly-behaved problem instances of dimension 1000 × 5000.Singapore-MIT Allianc

    The central limit problem for random vectors with symmetries

    Full text link
    Motivated by the central limit problem for convex bodies, we study normal approximation of linear functionals of high-dimensional random vectors with various types of symmetries. In particular, we obtain results for distributions which are coordinatewise symmetric, uniform in a regular simplex, or spherically symmetric. Our proofs are based on Stein's method of exchangeable pairs; as far as we know, this approach has not previously been used in convex geometry and we give a brief introduction to the classical method. The spherically symmetric case is treated by a variation of Stein's method which is adapted for continuous symmetries.Comment: AMS-LaTeX, uses xy-pic, 23 pages; v3: added new corollary to Theorem
    corecore